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COMMENT 

Exact cluster size distributions and mean cluster sizes for the 
q-state bond-correlated percolation model 

Chin-Kun Hu 
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529 

Received 7 July 1987 

Abstract. We show that the q-state bond-correlated percolation model ( Q H C P M ) ,  which is 
the percolation representation of the q-state Potts model (QPM),  on the lattice without 
closed loops is equivalent to the bond random percolation model (BRPM) on the same 
lattice. Using such results and exact results for the BRPM on the linear and Bethe lattices, 
we obtain exact cluster size distributions and the mean cluster sizes S for the QBCPM on 
the linear and Bethe lattices. The mean cluster sizes obtained from this method are the 
same as those obtained by more tedious exact calculations. Near the critical point, the 
average number of m site clusters per site, n,,,, for the QBCPM on the linear and Bethe 
lattices may be written in the scaling form for large values of m, which is the geometrical 
basis for the scaling laws of critical exponents. 

Percolation (Broadbent and Hammersley 1957, Hammersley 1957, Essam 1973, 1980, 
Stauffer 1979, 1985, Stauffer et a1 1982, Deutscher et a1 1983) is a branch of statistical 
mechanics which has developed rapidly in recent decades. In the bond random 
percolation model (BRPM)  on a lattice G of N sites and E nearest-neighbour ( N N )  

bonds, each bond of G is occupied independently with probability p and sites connected 
by occupied bonds are defined to be in the same cluster. For p above the critical point 
p c ,  a percolating (infinite) cluster appears. The average number of m site clusters per 
lattice site, n,, and the mean sizes of finite clusters S for the BRPM on the linear lattice 
with p < p c =  1 are given by (Stauffer and Jayaprakash 1978, Reynolds et al 1977, 
Stauffer 1985 It 

n m = ( l - p ) p " - ' ( l - p )  (1) 
S=- l + P  

1-P 
For the BRPM on the Bethe lattice with coordination number z, the corresponding p c ,  
n, and S in the interior of the lattice are given respectively by (Flory 1941, Fisher 
and Essam 1961, Nakanishi and Stanley 1980, Stauffer 1985)t 

1 
Pc = - z - 1  

:j. = l + P  
1 - ( z  - 1 ) p  

( 3 )  

(4) 

t These authors might not consider BRPM, but i t  is easy to derive the following formulae for the BRPM from 
their results. We also call n, , , ,  1 m < x, the cluster size distribution. 
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It has been shown by Kasteleyn and Fortuin (1969) and Fortuin and  Kasteleyn (1972) 
that the q-state Potts model (QPM)  (Potts 1952, Wu 1982) for q +  1 corresponds to the 
BRPM and it has been shown by Hu (1983a, 1984a, b, c, d,  1986a, b, c )  and  proposed 
by Sweeny (1983) that the QPM for q >  1 corresponds to a q-state bond-correlated 
percolation model (QBCPM)?. 

Based on the connection that the QBCPM on the lattices without closed loops is 
equivalent to the E ~ R P M  on the same lattices, which will be derived below, in this 
comment we will extend the results of equations (1)-(5) for the BRPM to the QBCPM. 

The mean cluster sizes obtained from this method are the same as those obtained by 
other more tedious exact calculations (Hu 1986b, Wang and Wu 1976). Near the 
critical point, i.e. e = Ip -pel << 1, the average number of m site clusters per site, n,, 
for the QBCPM on the linear and the Bethe lattices may be written in the scaling form 

n, = n - y ( m " s )  (6) 

for large values of m as in the case of the BRPM. 

Following the notation and  derivation of Hu (1984a, 1986a), we may write the 
partition function for the QPM on a lattice G of N sites and E nearest-neighbour ( N N )  

bonds as follows: 

zN == c e v (  K N N  c a(s,, ,)) 
7 ,  i\ 

= 1 ( e K  - l ) b ( G ) q n l G )  

G E G  

where b ( G ' )  and n(G')  are the numbers of occupied bonds and clusters in G', 
respectively, and 

p = 1 -e-K. (8) 

n ( G') = N - b( G') + I (  G') (9) 

where I(G') is the number of closed loops in G'. From (7) and (9), we find that Z, 
may be written as 

It follows from Euler's theorem that 

where 

For the lattices without closed loops, e.g. the Bethe lattice ( B G )  and the one- 
dimensional linear lattices ( L G ) ,  I (  G') = 0 and the QBCPM on such lattices is equivalent 
to the BRPM with p of (1 1) as a bond probability. Such correspondence is true for the 
probability weight of each G'. 

* S e e  also Kaufman and Andelman (1984) and Larsson (1986). For other lattice models, see Hu (1983b, 
1984e, 1985a, b,  1987a, b) .  
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Using p of (11) to replace p of (1) and (2), we have 

n, = (1 --p)p"- '(~ - p )  
1 + p  2 e K + q - 2  S=-= 
1 - p  4 

for the QBCPM on the linear lattice. Note that (12) is consistent with (3.12) and (3.15) 
of Hu (1986b) and (13) is consistent with (3.17), (3.18) and (3.34) of Hu (1986b). The 
equations of Hu (1986b) mentioned above are derived by procedures which are more 
tedious than the present method. 

Using p of (1 1) to replace p of equations (3)-(5), we have 

1 
z - 1  

pc=- 

2+(z-2)m 2[m(z - 1)1! n, = p m - ' (  1 -8) 
m ! [ m(z  - 2) + 2]! 

1 + p  
1 - ( 2  - 1 ) p  S =  

for the QBCPM on the Bethe lattice. 
Wang and Wu (1976) considered an external magnetic field that couples with one 

component of the Potts spin in the q-state Potts model with the following partition 
function: 

zWw = c n ex p( ~6 ( s, , s, + B c 6 ( s, , I  1) . (17) 

Wang and Wu (1976) have found that in the interior of the Bethe lattice the magnetic 
susceptibility of the model defined by (17) is given by 

S I  . s \  ( V )  

q - 1  1 + p  
x = q 2  l - ( Z - l ) P  

for 

1 
z -1  

p < - .  

Using subgraph expansion, Wu (1978) has shown that Z,, may be written as 

where the product is over all clusters c in G' and p is given by (8). Equation (20) 
becomes equation (7) when B = 0. Using (20) to calculate the magnetic susceptibility 
x in the interior of the Bethe lattice, we find that 

for 

1 
2-1 

p<-  
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where S5 is the mean size of finite clusters for clusters defined in (7) and (20). 
Comparing (18) and (21), we have 

1 +a  
1 - ( 2  - 1)P 

s5 = 

which is the same as that of (16) derived from the connection between the QBCPM and  
the effective BRPM on the Bethe lattice. It is clear that to derive (16) from ( 5 )  is simpler 
than to derive (18) and  (21). 

It has been postulated (Stauffer 1975) that the average number n, of clusters per 
lattice site for the random percolation problem follows a scaling relation near p c  (i.e. 
E = ( p  -pcJ << 1) and for large cluster sizes m 

n, a m-‘f(am“) (24) 
where U and 7 are two free exponents and  f is a scaling function. The other critical 
exponents may be expressed in terms of U and 7 and scaling relations of critical 
exponents follows straightforwardly (Stauffer 1975, 1985). It is easy to show that for 
E<< 1 and m >> 1, n, of (1) may be written as 

n, = m-’f( Em) (25) 
with f ( x )  = x2 e-x and n, of (4) may be written as (Nakanishi and  Stanley 1980) 

n, -2[2.rr(z -2)(2- 1)5]-”’m-5’2 exp{-(am”2)2(z- 1)[2(z-2)]-’}. (26) 

Therefore the scaling assumption (24) is valid for the random percolation problem on 
the linear and  Bethe lattices. Hu (1986b, c) and Sweeny (1983) have postulated that 
the average number of clusters per lattice site for clusters defined in (7) also follows 
the scaling relation of (24). It follows from ( l l ) ,  (12), (15), (25) and (26) that such a 
scaling assumption is also valid for the QBCPM on the linear and Bethe lattices. 
Therefore on such lattices the scaling relations of critical exponents may be understood 
from the scaling laws of cluster size distributions, i.e. n,. 

In a recent paper Larsson (1986) used equation (7) to formulate a real space 
renormalisation group calculation method for the q-state Potts model (QPM). However, 
Larsson’s method contains some inconsistency which may be removed by introducing 
a background energy factor on the left-hand sides of ( 3 . 2 ~ )  and (3.26) in his paper 
(Hu 1986d, Hu and Chen 1987). Instead of using (7), we may also use equation (10) 
of the present comment to formulate an alternative real space renormalisation group 
calculation method for the QPM. The details of such methods and  calculation results 
will be presented in a further paper (Hu  and  Chen 1987). 

In summary, we show that the q-state bond-correlated percolation model (QBCPM) 
on the lattice without closed loops is equivalent to the bond random percolation model 
(BRPM) on the same lattice. Based on such a connection and the existing exact results 
for the BRPM, we easily obtain exact cluster size distributions and mean cluster sizes 
for the QBCPM on the linear and Bethe lattices, which are the same as those obtained 
by other more tedious methods and which support the scaling assumption for cluster 
size distributions. 

The author thanks Professors M Aizemann, R B Griffiths, R H Swendsen and M 
Kaufman for drawing his attention to Sweeny (1983) and Kaufman and  Andelman 
(1984). He  also thanks Professor F Y Wu for useful discussions of Wang and  Wu 
(1976). This work was supported by the National Science Council of the Republic of 
China on Taiwan under contract number NSC76-0208-M001-30. 
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